

© Protean Code Limtied 2016.

Sanitizing Sensitive Data: How to get it Right

(or at least Less Wrong…)

Roderick Chapman

Protean Code Limited, UK

rod@proteancode.com

Abstract. Coding standards and guidance for secure programming call for sen-

sitive data to be “sanitized” before being de-allocated. This paper considers

what this really means in technical terms, why it is actually rather difficult to

achieve, and how such a requirement can be realistically implemented and veri-

fied, concentrating of the facilities offered by Ada and SPARK. The paper clos-

es with a proposed policy and coding standard that can be applied and adapted

to other projects.

Keywords: Security, Sanitization, SPARK, Verification, Volatile, Optimiza-

tion, Proof.

1 The Problem

Secure systems must be built to resist attack by increasingly sophisticated adversaries.

An attacker might be able to observe or provoke a system into “leaking” or revealing

data that is supposed to be kept secret, such as cryptographic keys, supposedly ran-

dom and unique “nonce” values, the plaintext of passwords and so on. A well-

documented example is the “Heartbleed” vulnerability in the OpenSSL libraries that

allowed a buffer over-read attack to leak sensitive data that had been left unsanitized

in memory.

Several coding standards and “guidance” documents exist that call for “sensitive”

data to be “sanitized” when no longer needed, but offer little advice on how this is to

be achieved or verified, especially given the complexity of modern programming

languages and hardware. This paper considers this problem in more detail and de-

scribes the key technical challenges, before going on to consider the facilities offered

by Ada and SPARK that can be used to meet these demands, based on experience

gained from a recent project.

1.1 Why is sanitizing data hard?

Sanitizing sensitive data might seem simple at first: just overwrite the data with zeros

and carry on, right? A less trivial analysis, though, reveals several important ques-

tions, including:

mailto:rod@proteancode.com

 How do we define “sensitive”? What objects in the program are “sensitive” and

how are they identified?

 Imagine that we have two variables A and B which are defined to be “sensitive.”

We declare and initialize a local variable C with an initial value derived from some

function that combines A and B. Is C “sensitive”? Does C need to be sanitized?

 Can constant objects be sensitive? If so, how are they to be sanitized?

 Exactly when should sanitization be performed? This question is related to the

scope and lifetime of data objects which is, in turn, intricately entwined with a par-

ticular programming language’s model of how data should be organized and

(de-)allocated.

 Compiler optimization might remove a sanitizing assignment to an object if the

assignment is seen to be redundant or “dead” by the optimizer. How can this be

prevented?

 How do we verify that sanitization really has been performed correctly, to the satis-

faction of ourselves, our customers, and regulators?

1.2 Standards, Guidance and Problems

There are several (possibly far too many) sets of guidance or coding rules for secure

systems that call for sensitive data to be sanitized as soon as it is no longer needed, so

that (for example) a subsequent buffer over-read will not find any useful data. This

section considers an incomplete set of these, and tries to point out problems in meet-

ing their advice.

CESG

The UK’s national technical authority for secure software, CESG, offers a short (but

thankfully unclassified) “Guidance Note” on secure coding [1]. It offers some generic

advice, but mainly consists of coding rules for C and C++. A need to avoid copying

sensitive data is mentioned (to avoid a copy existing even if the original is sanitized),

with two paragraphs specifically on sanitization:

“Sanitise all variables that contain sensitive data (such as cryptovariables and unencrypted

data) by overwriting with zeroes once they are no longer needed. This includes all copies of the

data: call-by-value functions (as found in C) implicitly copy the value of their parameters, so

their parameters should always be sanitised before the function exits. At protective markings

higher than Restricted, sanitisation may require multiple overwrites or verification, or both.” [1,

para 58].

and

“The sanitisation is needed because errors may result in the disclosure of a block of

memory, therefore the risk of that memory containing anything useful needs to be minimised.

The size of the data is not a factor: even single bytes need to be sanitised, since in some cases a

difference of 8 bits could have a significant impact on the practicality of an attack. On the other

hand, the lifetime of data may be a factor: if a variable can be shown to be overwritten shortly

afterwards, it may be acceptable not to sanitise it, provided it is sanitised when it is no longer

needed. ‘Shortly’ is not defined more precisely, since it will depend on the situation…” [1, para

59]

This is well-meaning, but offers little in the way of real technical detail of how san-

itization is to be achieved or verified. The failure to define “shortly afterwards” is also

disappointing.

CERT Coding Standards

The US-led CERT has produced coding guidance for secure software development,

covering C, C++, Java and Perl to date, with several tool vendors claiming compli-

ance. The CERT C Coding Standard provides some advice on sanitization:

 Recommendation 08 (Memory Management), Item 06 is titled “Ensure that sensi-

tive data is not written out to disk” which mostly covers the problem of an operat-

ing system “paging out” sensitive data to a disk or an application doing a “core

dump” which writes the state of a process to a disk file, potentially revealing the

state of sensitive data. These are valid concerns, relevant to any application run-

ning on an operating system that supports paging and so on, so not really a “C lan-

guage issue” per-se, since these problems could affect code written in any lan-

guage.

 Recommendation 48 (Miscellaneous), Item 06 is titled “Beware of compiler opti-

mizations” and covers the problem of a compiler removing a sanitizing assignment.

It goes on to recommend using “optimization safe” C functions, C’s “volatile”

qualifier (more of which later…) or operating-system specific functions that are

designed to sanitize memory.

Both of these recommendations appear to presume the existence of some sort of oper-

ating system (and possibly a “disk”), but what if we’re programming an embedded

“bare metal” system with no OS at all? How can we sanitize data properly in such an

environment?

Cryptography Coding Standard

The Cryptography Coding Standard is “a set of coding rules to prevent the most

common weaknesses in software cryptographic implementations” [3]. Their coding

rules touch on sanitization in a number of places:

 Coding Rule 5 “Prevent compiler interference with security critical operations”

mentions the problem of compilers removing sanitizing assignments, and how even

a call to C’s standard “memset” function can be optimized away in some cases. It

offers the rather vague advice to “Look at the assembly code produced and check

that all instructions are there” which hardly seems practical for anything but trivial

code. It also recommends “consider disabling compiler optimizations that can

eliminate or weaken security checks” but again this seems impractical – modern

compilers have hundreds of optimization switches, which makes it almost impos-

sible to “know” which set of them will or won’t “interfere” with security. Finally,

rule 5 does point out that the 2011 C standard does include a new “memset_s”

function, a call to which is explicitly not allowed to be optimized.

 Coding Rule 11 “Clean memory of secret data” looks promising, recommending

that code should “Clear all variables containing secret data before they go out of

scope.” It points out the existence of a SecureZeroMemory function in the Win32

API for this purpose. It also offers a portable C function that can be used to over-

write memory that works “for non-buggy compilers” [sic].

1.3 Technical Issues

Having seen that the standards and guidance documents offer well-meaning but im-

precise advice, we now turn to a selection of more detailed technical problems.

Unwanted Compiler Optimization

Several of the guidance documents cited above refer to this problem, so it warrants

more attention here.

Modern implementations of computer architectures feature a marked difference be-

tween the access time of CPU registers, data cache(s), and main memory, sometimes

by many orders of magnitude. In short, DRAM access times have not kept pace with

CPU clock rates, so the penalty for a “register miss” or a “cache miss” is pronounced.

Modern compilers therefore devote significant effort in several, related classes of

optimization, including:

1. Common sub-expression elimination and partial redundancy elimination. These

prevent semantically equivalent expressions from being evaluated more than once.

2. Register allocation and tracking, so that variables and the values of expressions are

stored in CPU registers as much as possible.

3. Dead-load and dead-store elimination.

These improve average-case performance, but create some issues for sanitization:

 Guidance calls for the “memory” occupied by a sensitive variable to be overwritten

“before the variable goes out of scope”, but what does that mean if the variable on-

ly ever exists in an internal CPU register and there is no “memory” allocated for it

at all?

 A final sanitizing assignment needs to occur just before a variable “goes out of

scope”, so is (by definition) a “dead store” in the eyes of an optimizer, so might be

removed, on the assumption that once a variable has gone out of scope it can’t be

accessed any more. This creates a conflict in the compiler: we (the programmers)

want dead stores to be retained for one or more particular variables, but the com-

piler is trying its hardest to remove them in the interests of improving performance

of the generated code.

Derived values and copies

In his thorough analysis “Zeroing buffers is insufficient” [4], Percival points out sev-

eral more pernicious technical issues with a simple “write zeros into memory” ap-

proach. Specifically, he points out:

 Sanitizing the one memory block where a variable is stored is not good enough.

Compilers implicitly make copies of data into registers or implicitly-declared and

initialized local variables, so these might also contain a copy of some sensitive in-

formation that needs to be sanitized. In the worst case, a compiler might evaluate

the value of a sensitive variable into a CPU register and spill that register into an

implicitly allocated temporary variable on the stack. There is no way to portably

sanitize such temporary variables in C or Ada, since those variables do not appear

in the source code.

 If a sensitive piece of data is left in a CPU register, you cannot assume that that

CPU register will be re-used and the data over-written “quickly”. Percival points

out that some CPU registers (such as the SSE registers on x86) are rarely used, and

some registers are specifically designed for cryptographic algorithms such as AES

– the problem being that you carefully use a “special” register to hold an AES key

(for example), but then that register is not used for anything else in your program,

so the key value just sits there for ages and is never overwritten.

A related problem is that of derived values. As pointed out in section 1.1, if two sensi-

tive variables A and B are combined in some way to get a value in variable C, should

C be considered to be sensitive and therefore needing sanitization? The answer is “it

depends”… on the exact operation used to derive C, the nature of A and B, and so on.

It is far from simple to suggest a generic one-size-fits-all policy for such variables.

By-copy parameter passing

If a subprogram parameter is passed by copy, then the value of the actual parameter is

copied into the storage associated with the formal parameter (which might be

“memory”, or might be a CPU register.) If the actual is sensitive, then so is the formal

parameter. In Ada, this is particularly problematic, since “in” mode parameters are

constant and so cannot be assigned to at all, and the choice between by-copy and by-

reference passing can be unspecified for some types.

CPU data caching and memory hierarchy

Anyone that has programmed a device-driver on a “bare metal” target will know that

the presence of a “write” instruction does not guarantee that the data actually reaches

the target hardware device at all, or in the order indicated in the source code. Modern

CPUs have multiple levels of data caching, which may be in “write back” mode, so an

instruction to write a particular word of memory might not actually reach the main

memory device until the offending data cache line is flushed or invalidated. Secondly,

modern CPUs can re-order memory accesses in rather unexpected ways, which can

complicate matters further.

Some operating systems offer functions that are specifically designed to securely

sanitize memory, such as Win32’s SecureZeroMemory function. We presume these

functions take care of any required flushing of caches, paged-out data and so on.

On bare-metal targets, we might turn off all data caching or insist on “write

through” mode, but this may be Draconian, since disabling all caching for all stack-

allocated data would incur a potentially huge performance penalty. Some CPUs might

allow special instructions to flush particular cache lines and instruct the CPU to pause

until all queued memory accessed are complete. These techniques are valid (and in-

deed may be absolutely necessary), but require recourse to obviously non-portable

assembly language programming at some level.

1.4 An example – how it can go wrong in Ada

This section closes with a short (and somewhat contrived) example of how sanitiza-

tion can fail in Ada. In the remainder of the paper, all examples have been compiled

with the GPL 2016 Edition of GNAT for 32-bit x86 running on Windows 7 Pro.

Consider a simple procedure GK that takes three seed values A, B, and C, and pro-

duces a derived key value K from them. For example:

 subtype Word32 is Interfaces.Unsigned_32;

 procedure GK (A, B, C : in Word32;

 K : out Word32);

The body of GK combines A, B, and C using a local, temporary variable T which

we have decided is sensitive and needs to be sanitized with a final assignment, thus:

 procedure GK

 (A, B, C : in Word32;

 K : out Word32)

 is

 T : Word32;

 begin

 T := A xor B; -- line 15

 T := T xor C;

 K := T;

 -- Now sanitize T

 T := 0; -- line 20

 end GK;

To see what’s going on, we’ll compile with both “-g” and “-fverbose-asm” flags.

We’ll also enable all warnings with “-gnatwa” and “-Wall” as we would on any real

project. Compiling GK does yield a warning:

p1.adb:20:07: warning: useless assignment to "T", value never

referenced

which hints at trouble ahead. Compiling with –O0 (little or no optimization) yields

the following assembly language for lines 15 through 20 of GK:

 .loc 1 15 0

 movl 8(%ebp), %eax # a, tmp88

 xorl 12(%ebp), %eax # b, tmp87

 movl %eax, -12(%ebp) # tmp87, t

 .loc 1 16 0

 movl 16(%ebp), %eax # c, tmp89

 xorl %eax, -12(%ebp) # tmp89, t

 .loc 1 17 0

 movl -12(%ebp), %eax # t, tmp90

 movl %eax, -16(%ebp) # tmp90, k

 .loc 1 20 0

 movl $0, -12(%ebp) #, t

so we can see the final assignment to T on line 20 has indeed been generated as a

single “movl” instruction.

Turning on the optimizer at level “-O1” reveals a different story. For the same

fragment of code, we get:

 movl 16(%ebp), %eax # c, c

 xorl 12(%ebp), %eax # b, D.3010

 xorl 8(%ebp), %eax # a, k

and that’s all. The local variable T is not allocated at all on the stack – it has com-

pletely disappeared, in fact, with the intermediate results left in the CPU register

EAX. Our well-intended attempt to sanitize T has been discarded by the compiler, but

then again, T has disappeared entirely, so is this sufficient? What about the intermedi-

ate value left in EAX – is that overwritten “soon” by the calling subprogram perhaps?

2 Sanitization – Constraints and Goals

In developing the coding standard for a recent project, we had to meet both CESG’s

guidance for sanitization [1], but also the constraints imposed by the wider demands

of the project, including the runtime environment, compilers, feature of the target

platform and its operating system and so on.

In searching for the most general solution, we tried to respect the following con-

straints:

1. The approach to sanitization should minimize dependence on predefined library

units and the use of language features that require substantial support from the Ada

runtime library. In particular, for our project, we required compatibility with

GNAT’s “Zero Footprint” (ZFP) runtime library.

2. The approach should not depend on any operating system facilities, and so can be

deployed on a “bare metal” target system.

3. The approach should be compatible with the SPARK language (either SPARK2005

or SPARK2014) and verification tools.

Secondly, what does a “good” approach to sanitization look like? In developing

these guidelines for Ada, we tried to respect the following goals:

1. Any proposed approach should be portable in that it should not depend on non-

standard behavior from the compiler, and should not rely on particular unspecified

or implementation-defined choices made by a compiler.

2. Our approach should permit optimization to be enabled at all levels, with sufficient

confidence that sanitization code would be preserved and implemented correctly.

3. Our approach must prevent (as far as is possible) explicit or implicit copying or as-

signment of sensitive values. This also affects parameter passing, since a “by-

copy” formal parameter involves assignment.

4. Our approach should facilitate (or at least not obstruct) verification with the

SPARK toolset.

5. Our approach should meet or exceed the demands of the various regulatory stand-

ards, such as [1]. Furthermore, we should be able to explain and justify our ap-

proach to those regulators so that we can convince them that it actually works.

3 Sanitization mechanisms in Ada

Having considered the scope of this problem, this section turns to the language-based

mechanisms that are available in Ada. Knowing what mechanisms are available can

then lead to a policy that can be adopted for a particular project.

3.1 Volatile

Ada, C and C++ all include a facility to mark an object as “Volatile”, meaning that

the compiler must respect the exact sequence of reads and writes to such an object

that are indicated in the source code. Ada goes further, allowing Volatile types as well

as objects. The Ada LRM offers a clear implementation requirement (Ada2012 RM,

C.6(20)):

“The external effect of a program…is defined to include each read and update of a

volatile or atomic object. The implementation shall not generate any memory reads or

updates of atomic or volatile objects other than those specified by the program.”

Let’s see what happens to our example procedure GK with the declaration of T

changed as follows:

 T : Word32 with Volatile;

With that in place, we should be able to turn the optimizer “up to 11” (well…3)

and compile with “-O3”. Firstly, the warning from the front-end about the useless

assignment to T disappears, which is a good sign. The generated code for lines 15 –

20 is:

 .loc 1 15 0

 movl 12(%ebp), %eax # b, b

 xorl 8(%ebp), %eax # a, D.3014

 movl %eax, -12(%ebp) # D.3014, t

 .loc 1 16 0

 movl -12(%ebp), %eax # t, D.3015

 xorl 16(%ebp), %eax # c, D.3014

 movl %eax, -12(%ebp) # D.3014, t

 .loc 1 17 0

 movl -12(%ebp), %eax # t, k

 .loc 1 20 0

 movl $0, -12(%ebp) #, t

so we see that all the reads and writes of T have been preserved, including the final

sanitizing assignment.

At first glance, this appears to be a perfect match, at least when it comes to pre-

venting the optimization of sanitizing assignments. Unfortunately, it’s not that simple

for several reasons:

1. Volatile prevents optimization of all reads and writes to an object, but we only re-

quire that the final sanitizing assignment is preserved, so use of Volatile might

have a serious but unnecessary impact on the performance of the generated code.

2. SPARK2014 places some restrictions on the use of Volatile that might clash.

3. Most seriously and worryingly, Regehr and Eide [5] have shown that most, if not

all, compilers can mis-compile Volatile and do optimize away reads and writes

when they shouldn’t. Regehr’s work dates from 2008 (so we hope compilers have

improved since then), and was based on analysis of C programs, but his concerns

are real, especially since his results include those for GCC, which shares its back-

end (and optimization code) with GNAT.

So, despite its initial good looks, the use of Volatile is not a panacea for data sanitiza-

tion. Secondly, it does not address the need to restrict assignment and copying of

sensitive data objects at all.

3.2 Controlled Types

Ada’s “Controlled Types” offer a tempting approach to supply a “Finalize” procedure

that sanitizes an object. Unfortunately, the use of controlled types conflicts with our

constraints to be compatible with both SPARK and the ZFP runtime library. They are

also renowned for their complexity, so were rejected without further investigation.

3.3 Limited Types

Ada’s limited types are particularly attractive for holding sensitive data. Firstly, the

programmer can have complete control over exactly what set of operations are availa-

ble to clients. Secondly, and by default, assignment is not defined for limited types.

Finally, an explicitly limited record type is defined to be a by-reference type (RM

6.2(7)) so we can be sure that all formal parameters of such a type will be passed by

reference, not by copy.

3.4 By-Reference Types

Where the use of a limited record type is not appropriate or practical, there are still

other means of forcing a type to be a “by-reference” type in Ada, which will, at least,

prevent copying by parameter passing where we don’t want it. LRM C.6 (18) tells us

that if any sub-component of a type is Atomic or Volatile, then the type is defined to

be a by-reference type. Thus we can force by-reference passing for even a simple

scalar type by wrapping it in a record which has a single Atomic or component. For

example, instead of declaring a formal “in” mode parameter of type Boolean, we

might declare:

 type Sensitive_Boolean is record

 F : Boolean with Volatile;

 end record;

to ensure by-reference parameter passing. Using GNAT, it is also possible to verify

the parameter passing mechanism using the “–gnatRm” flag.

3.5 Pragma Inspection_Point

This little-used (and little-understood perhaps) pragma has particular relevance to this

problem. Inspection_Point was introduced in Ada95 as part of the RM’s Safety and

Security Annex H. It is designed to specify a list of objects that must be inspectable at

a particular point in a program. A pragmatic interpretation means that the listed ob-

jects are supposed to be stored in memory at the inspection point so that their values

can be seen by external means, such as a logic analyser, a JTAG probe, a real-time

debugger or similar. From the point of view of optimization, the Ada RM is clear:

‘The implementation is not allowed to perform “dead store elimination” on the last

assignment to a variable prior to a point where the variable is inspectable. Thus an

inspection point has the effect of an implicit read of each of its inspectable objects.’

(Ada RM H3.2 (9)).

This seems ideal for our needs – if a final, sanitizing assignment to a sensitive ob-

ject is immediately followed by a pragma Inspection_Point for that object, then that

final assignment should not be optimized away. This provides much finer control than

pragma Volatile. For the curious, GNAT actually implements pragma Inspec-

tion_Point by generating a dummy volatile read to each of the objects specified in the

pragma. See the file gcc-interface/trans.c in the GNAT sources for details [6] and

search the file for “Inspection_Point”.

Returning to our simple example, we revert to declaring T as a normal (non-

volatile) local variable, but now follow the final assignment with an Inspection_Point,

thus:

 -- Now sanitize T

 T := 0; -- line 20

 pragma Inspection_Point (T);

The generated code at –O1 is:

 /APP

 # 21 "p3.adb" 1

 # inspection point: t is in $0 #

 # 0 "" 2

 /NO_APP

 movl 12(%ebp), %eax # b, b

 xorl 16(%ebp), %eax # c, D.3010

 .loc 1 16 0

 xorl 8(%ebp), %eax # a, k

which is interesting. Again, the variable T has been entirely eliminated, but com-

mentary has been added that “t is in $0” since T does not have an accessible address

in memory at all.

3.6 No_Inline and sanitizing operations

Having identified the problems with Volatile objects, Regehr and Eide go on to rec-

ommend that all reads and writes of a volatile variable should be performed by a sub-

program call that can never be inlined, since inlined code has the potential to be opti-

mized away during the compilation of any calling units. Regehr demonstrates how

this works well for C, and the equivalent mechanism exists for Ada with the GNAT-

defined pragma No_Inline.

Combining this idea with the use of a limited private type for sensitive data yields

the following pattern for a sensitive abstract data type:

 package Sensitive is

 type T is limited private; -- so no assignment

 procedure Sanitize (X : out T);

 pragma No_Inline (Sanitize);

 private

 type T is limited record -- so by-reference

 F : … -- whatever…

 end record;

 end Sensitive;

The body of Sensitive.Sanitize might depend on the target platform and operating

system, so we recommend implementing it as a separate subunit of package Sensitive

to allow for alternative implementations to be chosen at build-time. Let’s imagine that

the field F of type T is of type Word32. In that case, a suitable implementation for a

bare-metal/ZFP target might be:

 separate (Sensitive)

 procedure Sanitize (X : out T) is

 begin

 X.F := 0;

 pragma Inspection_Point (X);

 end Sanitize;

At –O3, the generated code for the assignment statement and the pragma is:

 movl 8(%ebp), %eax # x, x

 movl $0, (%eax) #, x_2(D)->f

 /APP

 # 6 "sensitive-sanitize.adb" 1

 # inspection point: x address is in %eax # x

 # 0 "" 2

 /NO_APP

We can also check the parameter passing mechanism using –gnatRm which yields:

 procedure sanitize declared at sensitive.ads:5:14

 convention : Ada

 x : passed by reference

4 Verification and SPARK

The SPARK toolset offers two major forms of static verification—information-flow

analysis and proof of user-defined assertions, pre-conditions and post-conditions. This

section briefly considers the interplay between sanitization and these forms of verifi-

cation.

4.1 Information Flow Analysis

As expected, both the SPARK2005 and SPARK2014 tools will reliably report that a

final sanitizing assignment to a local variable is ineffective, meaning that the assign-

ment has no influence on the final value of any exported variable of the subprogram

under analysis. This is perfectly correct and reasonable. At first, such errors being

reported might seem an annoyance, we can turn this to our advantage using pragma

Warnings to document the expectation and need for the sanitization. For our earlier

example, we would add:

 pragma Warnings (Off, “unused assignment”,

 Reason => “Sanitization”);

 T := 0;

 pragma Inspection_Point (T);

4.2 Proof

At first glance, it might be possible to prove that sanitization of variables has been

performed, but closer inspection reveals two main issues:

 The final value of a local variable cannot be asserted in the post-condition of the

subprogram that declares it, owing to its very local-ness. It would be possible to as-

sert the value of a library-level variable (which would appear in the Global aspect

of the subprogram).

 Writing an assertion regarding the value of a sensitive variable means that we need

to decide on a (constant) value that should be used to sanitize the variable. The na-

ive approach of “zero all bits” might not be appropriate, since “all zeros” might not

be a valid value. SPARK and Ada have no “memset” or similar, so need to be able

to write an assignment statement which is legal and itself free from runtime errors.

5 A Policy for Sanitization

In light of the difficulties described above, and the facilities offered by Ada and

SPARK, and our experience on one project, we would offer the following policy for

sanitization of sensitive data for future work.

5.1 Identification and Naming of Sensitive Variables

A project must document a clear policy for what exactly is and isn’t considered to be

a “sensitive” object. This is clearly project- and application-specific. In cryptographic

applications, for example, sensitive data might include cryptographic keys, the primi-

tive seed values used to generate such keys, use-one random “nonce” values, initiali-

zation vectors for encryption algorithms, and “trust anchors” or private keys.

The definition of “sensitive” may also have to consider the visibility and lifetime

of the objects—local variables and library level states might have to be treated very

differently, for example.

Finally, the sensitivity of a particular variable might depend on the precise physical

storage device it is allocated to. For example, general-purpose DRAM might be con-

sidered “insecure” since its operation could be observed by a sophisticated attacker,

but the private RAM on a tamper-proof hardware security module might be consid-

ered suitable for storage of sensitive information with no sanitization required.

Having chosen a policy for deciding which states are sensitive, we propose a nam-

ing convention as follows:

 The names of types used for sensitive data should be prefixed with “Sensitive_”.

 The names of variables that are sensitive should have the suffix “_SAN” meaning

that such variables should be sanitized.

 The name of a formal subprogram parameter that might be associated with a sensi-

tive actual parameter shall also have the suffix “_SAN”.

 Sensitive constants are not permitted.

5.2 Types and Aspects for Sensitive Data

 By-reference types should be used for all sensitive data.

 Preferably, and if possible, a limited type should be used for sensitive data to for-

bid assignment. In this case:

─ A “Sanitize” procedure should be supplied, as shown in section 3.6, which has a

No_Inline pragma applied to it.

─ The body of such a “Sanitize” procedure should be supplied as a separate subu-

nit to allow for multiple implementations for different platforms and operating

systems.

─ The body of “Sanitize” shall include a pragma Inspection_Point immediately

following the final assignment to the formal parameter. Note that the presence

of the pragma is sufficient to suppress the “useless assignment” warning illus-

trated in section 1.4. This is useful for verification, since presence of this warn-

ing is a strong indication that the programmer has forgotten to add the pragma.

 If a limited type is not possible, then a Sanitize procedure shall still be supplied for

any particular sensitive type, implemented as above. In this case, code review

checklists must include a check that assignment is not used for objects of such

types.

 For SPARK code, a pragma Warnings shall always precede a final sanitizing as-

signment (or the call to a Sanitize procedure) to document the need for the sanitiza-

tion and to suppress the information-flow warning.

5.3 Compiler Switches and Analysis

 All code should be compiled with “-gnatwa” to ensure that the “useless assign-

ment” warning is generated. This should be expected for sanitizing assignment, but

suppressed with pragma Inspection_Point.

 The “-gnatRm” switch should be used to verify by-reference parameter passing

mechanism for all sensitive formal parameters. This is easy is the naming conven-

tion above has also been followed.

 For the utmost confidence, analysis of the generated assembly language should be

performed using the “-g” and “-fverbose-asm” flags to verify that the inspection

points required are present and correct.

6 Future Work

Several areas of potential future work seem apparent.

 Several authors have called for compilers to help automate sanitization via some

sort of special compilation switch (“-fsanitize_local_data” perhaps?). This could go

further than source-based techniques since the compiler could arrange to sanitize

all local states, derived variables, temporaries, and CPU registers for example.

How a compiler designer would convince others of the correctness of such an ap-

proach remains unknown.

 The problem of sensitive derived variables could be addressed through more ad-

vanced information flow analysis. If a tool like GNATProve, for example, knew

that variables A and B were sensitive, then could it automatically infer that C (de-

rived from A and B) were also sensitive?

 At the Ada language level, is there a need for a new aspect that could be applied to

types or variables to mark them as requiring sanitization? This would provide a

finer level of control than a simple, global compiler switch.

7 Conclusions

Sanitization of sensitive data remains a thorny issue: standards call for it to be done,

but offer little advice on how it should be achieved in practice or verified. This paper

has illustrated some of the problems and shown how they can be addressed in Ada

and SPARK and developed into a policy, coding standard, and verification strategy

for a particular project.

Acknowledgements. The author would like to Rod White and Bill Ellis for their

comments on an early draft of this paper.

8 References

1. CESG. Coding Requirements and Guidance (IA Developers’ Note 6), CESG, Issue 1.1,

October 2015.

https://www.ncsc.gov.uk/guidance/coding-requirements-and-guidance-ia-developers-note-

6

2. US CERT. SEI CERT C Coding Standard.

https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard

3. Cryptography Coding Standard Project

https://cryptocoding.net/index.php/Cryptography_Coding_Standard

4. Percival, C.: Zeroing Buffers is Insufficient.

http://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html

5. Regehr, J., Eide, E.: Volatiles are Miscompiled and What to Do About It. In: Proceedings

of the Eighth ACM and IEEE International Conference on Embedded Software

(EMSOFT), Atlanta, Georgia, October 2008.

http://www.cs.utah.edu/~regehr/papers/emsoft08-preprint.pdf

6. GNAT sources at gcc.gnu.org.

https://gcc.gnu.org/viewcvs/gcc/trunk/gcc/ada/gcc-interface/trans.c

https://www.ncsc.gov.uk/guidance/coding-requirements-and-guidance-ia-developers-note-6
https://www.ncsc.gov.uk/guidance/coding-requirements-and-guidance-ia-developers-note-6
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+Coding+Standard
https://cryptocoding.net/index.php/Cryptography_Coding_Standard
http://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
http://www.cs.utah.edu/~regehr/papers/emsoft08-preprint.pdf

